Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Epidemiol Infect ; 151: e21, 2023 01 18.
Article in English | MEDLINE | ID: covidwho-2221729

ABSTRACT

SARS-CoV-2 has severely affected capacity in the National Health Service (NHS), and waiting lists are markedly increasing due to downtime of up to 50 min between patient consultations/procedures, to reduce the risk of infection. Ventilation accelerates this air cleaning, but retroactively installing built-in mechanical ventilation is often cost-prohibitive. We investigated the effect of using portable air cleaners (PAC), a low-energy and low-cost alternative, to reduce the concentration of aerosols in typical patient consultation/procedure environments. The experimental setup consisted of an aerosol generator, which mimicked the subject affected by SARS-CoV-19, and an aerosol detector, representing a subject who could potentially contract SARS-CoV-19. Experiments of aerosol dispersion and clearing were undertaken in situ in a variety of rooms with two different types of PAC in various combinations and positions. Correct use of PAC can reduce the clearance half-life of aerosols by 82% compared to the same indoor-environment without any ventilation, and at a broadly equivalent rate to built-in mechanical ventilation. In addition, the highest level of aerosol concentration measured when using PAC remains at least 46% lower than that when no mitigation is used, even if the PAC's operation is impeded due to placement under a table. The use of PAC leads to significant reductions in the level of aerosol concentration, associated with transmission of droplet-based airborne diseases. This could enable NHS departments to reduce the downtime between consultations/procedures.


Subject(s)
Air Filters , COVID-19 , Humans , SARS-CoV-2 , State Medicine , Respiratory Aerosols and Droplets , Hospitals
2.
Sci Rep ; 11(1): 24183, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1585792

ABSTRACT

COVID-19 has restricted singing in communal worship. We sought to understand variations in droplet transmission and the impact of wearing face masks. Using rapid laser planar imaging, we measured droplets while participants exhaled, said 'hello' or 'snake', sang a note or 'Happy Birthday', with and without surgical face masks. We measured mean velocity magnitude (MVM), time averaged droplet number (TADN) and maximum droplet number (MDN). Multilevel regression models were used. In 20 participants, sound intensity was 71 dB for speaking and 85 dB for singing (p < 0.001). MVM was similar for all tasks with no clear hierarchy between vocal tasks or people and > 85% reduction wearing face masks. Droplet transmission varied widely, particularly for singing. Masks decreased TADN by 99% (p < 0.001) and MDN by 98% (p < 0.001) for singing and 86-97% for other tasks. Masks reduced variance by up to 48%. When wearing a mask, neither singing task transmitted more droplets than exhaling. In conclusion, wide variation exists for droplet production. This significantly reduced when wearing face masks. Singing during religious worship wearing a face mask appears as safe as exhaling or talking. This has implications for UK public health guidance during the COVID-19 pandemic.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Face , Masks , Singing/physiology , Adult , COVID-19/epidemiology , COVID-19/virology , Cross-Sectional Studies , Exhalation/physiology , Female , Humans , Male , Pandemics/prevention & control , Risk Factors , SARS-CoV-2/physiology , Virus Shedding/physiology
SELECTION OF CITATIONS
SEARCH DETAIL